
Rapid IoT/Embedded Development Platform: OPEN-ARM

Ari E. Siitonen

ABSTRACT

OPEN-ARM is development framework for ARM Cortex-based IoT/Embedded products. It

has Application-First approach: we define the requirements first and later decide what/which

makes/models can be used. This way we are not locked to one chip-provider.

Furthermore, we can build easily concurrently Products with multiple ARM:s and be prepared for

chip shortages. We are 100% manufacturer-independent and use only our own proprietary code, with

zero dependency on manufacturer SDK:s.

1. PROBLEM STATEMENT

Current ARM based development usually starts

with selection of ARM Chip (manufacturer and

make). This leads to dependency to selected chip’s de-

velopment environment and libraries. Also the imple-

mentation will be using features specific to the chip.

This will cause problems when selected chip be-

comes unavailable or in-economical as switching to

another chip at production phase can cause disrup-

tion in deliveries. To port the chip-bound code to

new one will require a lot of testing and validation

that takes time.

And after the switch the new chip can become ex-

tinct same way that the fist one did, unless one can

afford to purchase stock to last a decade.

2. INTRODUCTION

Our Target: Maximal freedom from chip choice con-

straints and keeping options available.

Once the application requirements have been for-

mally defined, OPEN-ARM starts by mapping them

to all supported ARM MCU:s. The chip availabil-

ity and price can be defined as one of the require-

ments. System tracks continuously major distributors
for market data.

Designer can then pick one or more MCU:s, and

continue to map pins to required functionalities. Sup-

porting initialisation and API functions are gener-

ated for each MCU along with Schematic symbol with

mapped pin-out.

3. DEVELOPMENT CYCLE

OPEN-ARM provides a platform and community

to develop products based on ARM Cortex MCU:s.

3.1. Cloud Compiler

We maintain on-demand cloud gcc/clang-compiler

environments and integrate with github/bitbucket

CI-features to build Client’s artefacts.

3.2. VS-Code Integration

Seamless VSC integration allows native interface for

most of the developers. Along with ssh-style console

connection to Device Under Development/Test.

3.3. Artefact Storage

Binaries and other build products can be stored and

archived on our servers securely and deployed into

products.

3.4. Safety and Security

OPEN-ARM can maintain master keys and serialise

Client’s products, or we can provide tools to do that

in-house.

3.5. Production

OPEN-ARM platform includes economical hard-

ware for flashing, serialisation and securing the de-

vices during production. There is no need for j-link

or similar third party tool (which of course can be

used if wanted).

3.6. Firmware Updates

OPEN-ARM generates firmware update bundles

with encrypted binary and signature.

The device will always keep the factory-default f/w

as fail-safe: If updated f/w fails with watchdog event

the default version is automatically taken in use. This

way there is always a path for regression.

If configured so, previous version can also be re-

tained as primary regression. And if that fails too,

then factory-default is taken into use.

4. COMMUNITY

Everything cannot be generalised and some devel-

opment tasks can be defined well enough to be out-

sourced. And OPEN-ARM allows it easily

4.1. Out-Sourcing S/W Work

As an OPEN-ARM user one can define inputs, out-

puts and functionality and make a Community Task

Request:



2

Requirements: Client is responsible to give clear

and understandable requirements and test

cases. Fulfilment and passing tests will consti-

tute accepted delivery and billing.

Security: The external developer will know nothing

of the Client Project, only requirements and test

cases are revealed. And a NDA is in effect.

Priority: Time frame and pricing depends on this.

Feasibility: Community can give vote before com-

mitting to the task on the feasibility of the task

on the selected MCU(s).

License: Client can request Closed or Open Source

license for the work. Also, a binary delivery is

possible: then software stays on OPEN-ARM

servers and is linked to client f/w.

Reviews: We can assist on reviews if requested by

client.

Testing: OPEN-ARM will arrange test-setup and

verify successful pass of tests defined by the

Client.

4.2. Out Sourcing H/W Work

Also PCB and Schematic work can be outsourced

once I/O and peripherals are defined.

Prototype: First prototype can be built from

OPEN-ARM-development boards if necessary

to speed up development. External peripherals

will be emulated by our test-setup.

Schematics: can be drafted from Device Description

either by us or Community member.

PCB: can be defined and designed once Schematics is

done, also either by us or Community member.

5. TECHNOLOGY

OPEN-ARM provides fast and easy solution to

IoT/ARM development, especially during the times

of component shortage.

All internal and external interfaces are abstracted

into a static vector with generalised API.

5.1. Standard Cortex Features

These features are common to all ARM makes and

models and can be supported with our generic code.

The module definitions themselves configure the de-

vice and will provide API functions to be used in the

Application.

RTC: Real Time Clock support in included as stan-

dard.

WATCHDOG: Hardware watchdog is supported

ensuring resilience of exceptions.

ENERGY: Various sleep modes and MCU clock fre-

quency adjustments are supported and energy

budget is provided. It can even be verified in

test setup.

GPIO: General Purpose I/O: direction, open-drain,

pull-up/down configuration and API for control

is automatically provided per definition.

UART: Support for serial ports: RS232, RS485, etc.

Polled, IRQ and DMA supported.

SPI: Synchronous Peripheral Interface: Industry

Standard interface supporting both Master and

Slave modes.

I2C: Inter-Integrated Circuit: Another Industry

Standard interface also supporting both Master

and Slave modes.

ADC/DAC: Analogue interfaces both way sup-

ported in limits of chip hardware. DMA too

if available.

5.2. Standard External Hardware Modules

Our supported Externals Modules interface to

MCU via UART/SPI/I2C.

LORA: Long Range Radio is supported with multi-

ple vendor’s modules.

NB-IoT: Narrow Band IoT is also multiple modules.

MQTT: MQTT can be supported both on LTE-

module AT-command or as f/w MQTT imple-

mentation.

DEVICES: A plethora of common peripheral chips

are supported. And simulation is available for

them, so Application can be verified fully in

testing.

5.3. Standard Software Modules

RT0S Provides almost Bare-Metal level minimal

OS:

• Fully Static design.

⇒ Will not run out of memory or corrupt it.

⇒ Deterministic behaviour.

• No Open Source code

⇒ No Licences to track.

⇒ No overhead from bloated manufacturer

SDK:s



3

• Minimal RTOS with optimal h/w-

support→Less Code

⇒ Will fit on smallest FLASH/RAM, even on

4kb flash and 1kb ram.

⇒ Less Energy.

⇒ More MCU choices.

⇒ Faster and more reliable f/w updates.

⇒ Faster development cycle.

• Modular design:

⇒ During development just the new code

module binary can be uploaded quickly to RAM

and executed.

⇒ Installed device can be patched with new

s/w modules incrementally.

TASKS: A non-preemptive scheduler is provided if

main loop is not sufficient for the Application.

Performance is monitored and MCU clock can

be governed dynamically by load.

BUFFERS: Circular Buffers and FIFO:s as pro-

vided with simple API.

HEAP: All memory besides static variables and

stack allocation is free to use by application

as Heap-memory. Memory allocation scheme is

static, so there is no garbage collection or run-

ning out of memory in run-time. Application

initialisation should request all required blocks

of memory from Heap.

STATE-MACHINES: Either with web tool or

with JSON-description one can define multiple

finite state machines in a standard fashion.

5.4. Custom Features

These features are so varied and sophisticated that

they require custom code to be useful. But with the

community of developers we can provide efficient and

economical out-sourced solutions per Application Re-

quirements.

TIMER: Timers with Input and Output Compares

are building blocks for real-time control and also

for measurements.

RADIO: Bluetooth/Zigbee style radio support is

also quite complex and cannot be generalised.

5.5. Web Admin and Apps

OPEN-ARM maintains a web administration site

for all Clients allowing configuration and monitoring

of their fleet of devices.

Also we provide templates and libraries that pro-

vide tools for Clients to build custom web apps for

their products.

5.6. Mobile App

Building on Capacitor Mobile App Platform

OPEN-ARM provides suitable libraries to build cus-

tom Mobile Apps for client projects. Also standard

debugging and configuration Apps are provided.

5.7. Testing and Verification

All standard modules are provided with p-tests, and

our test-setup can simulate GPIO, ADC, DAC, SPI

and I2C signals and emulate peripheral devices.

For custom modules the developer will build tests

for defined coverage by Client.

OPEN-ARM maintains a farm of Devices Under

Test (DUT), allowing tests to be run on Client Ap-

plications.

Robot Framework: library is available for testing,

and it is able to remotely access test-setup at

our premises.

Live Debugging: Our test-setup allows

UART/SWD/JTAG remote and local debug-

ging via API and web GUI. A API and MQTT

interface is available for integration along with

CLI-tools.

6. CONCLUSION

Product development with ARM Cortex does not

need to be expensive, unpredictable and time con-

suming.

With proper tools and a supporting community

soft- and hardware projects will become predictable


	Problem Statement
	Introduction
	Development Cycle
	Cloud Compiler
	VS-Code Integration
	Artefact Storage
	Safety and Security
	Production
	Firmware Updates

	Community
	Out-Sourcing S/W Work
	Out Sourcing H/W Work

	Technology
	Standard Cortex Features
	Standard External Hardware Modules
	Standard Software Modules
	Custom Features
	Web Admin and Apps
	Mobile App
	Testing and Verification

	Conclusion

